

PROBABILITY

Exercise 15.1 Page: 283

1. In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.

Solution:

According to the question,

Total number of balls = 30

Number of boundary = 6

Number of times batswoman didn't hit boundary = $30 - 6 = 24$

Probability she did not hit a boundary = $24/30 = 4/5$

2. 1500 families with 2 children were selected randomly, and the following data were recorded:

Number of girls in family	2	1	0
Number of families	475	814	211

Compute the probability of a family, chosen at random, having

(i) 2 girls (ii) 1 girl (iii) No girl

Also check whether the sum of these probabilities is 1.

Solution:

Total numbers of families = 1500

(i) Number of families having 2 girls = 475

Probability = Number of families having 2 girls/Total number of families
 $= 475/1500 = 19/60$

(ii) Number of families having 1 girl = 814

Probability = Number of families having 1 girl/Total number of families
 $= 814/1500 = 407/750$

(iii) Number of families having 0 girls = 211

Probability = Number of families having 0 girls/Total number of families
 $= 211/1500$

Sum of the probability = $(19/60) + (407/750) + (211/1500)$

$= (475+814+211)/1500$

$= 1500/1500 = 1$

Yes, the sum of these probabilities is 1.

3. Refer to Example 5, Section 14.4, Chapter 14. Find the probability that a student of the class was born in August.

Solution:

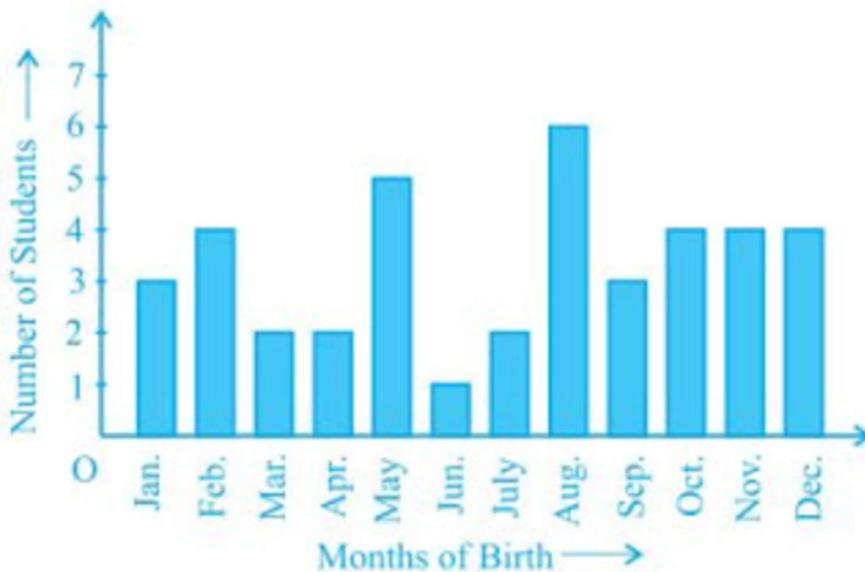


Fig. 14.1

Total number of students in the class = 40

Number of students born in August = 6

The probability that a student of the class was born in August = $6/40 = 3/20$

4. Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:

Outcome	3 heads	2 heads	1 head	No head
Frequency	23	72	77	28

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.

Solution:

Number of times 2 heads come up = 72

Total number of times the coins were tossed = 200

∴, the probability of 2 heads coming up = $72/200 = 9/25$

5. An organisation selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:

Monthly income (in ₹)	Vehicles per family			
	0	1	2	Above 2
Less than 7000	10	160	25	0
7000-10000	0	305	27	2
10000-13000	1	535	29	1
13000-16000	2	469	59	25
16000 or more	1	579	82	88

Suppose a family is chosen. Find the probability that the family chosen is

- earning ₹10000 – 13000 per month and owning exactly 2 vehicles.
- earning ₹16000 or more per month and owning exactly 1 vehicle.
- earning less than ₹7000 per month and does not own any vehicle.
- earning ₹13000 – 16000 per month and owning more than 2 vehicles.
- owning not more than 1 vehicle.

Solution:

Total number of families = 2400

(i) Number of families earning ₹10000 – 13000 per month and owning exactly 2 vehicles = 29

∴, the probability that the family chosen is earning ₹10000 – 13000 per month and owning exactly 2 vehicles = $29/2400$

(ii) Number of families earning ₹16000 or more per month and owning exactly 1 vehicle = 579

∴, the probability that the family chosen is earning ₹16000 or more per month and owning exactly 1 vehicle = $579/2400$

(iii) Number of families earning less than ₹7000 per month and does not own any vehicle = 10

∴, the probability that the family chosen is earning less than ₹7000 per month and does not own any vehicle = $10/2400 = 1/240$

(iv) Number of families earning ₹13000-16000 per month and owning more than 2 vehicles = 25

∴, the probability that the family chosen is earning ₹13000 – 16000 per month and owning more than 2 vehicles = $25/2400 = 1/96$

(v) Number of families owning not more than 1 vehicle = $10+160+0+305+1+535+2+469+1+579 = 2062$

∴, the probability that the family chosen owns not more than 1 vehicle = $2062/2400 = 1031/1200$

6. Refer to Table 14.7, Chapter 14.

(i) Find the probability that a student obtained less than 20% in the mathematics test.

(ii) Find the probability that a student obtained marks 60 or above.

Solution:

Marks	Number of students
0 – 20	7
20 – 30	10
30 – 40	10
40 – 50	20
50 – 60	20
60 – 70	15
70 – above	8
Total	90

Total number of students = 90

(i) Number of students who obtained less than 20% in the mathematics test = 7

∴, the probability that a student obtained less than 20% in the mathematics test = $7/90$

(ii) Number of students who obtained marks 60 or above = $15+8 = 23$

∴, the probability that a student obtained marks 60 or above = $23/90$

7. To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.

Opinion	Number of students
like	135
dislike	65

Find the probability that a student chosen at random

(i) likes statistics, (ii) does not like it.

Solution:

Total number of students = $135+65 = 200$

(i) Number of students who like statistics = 135

, the probability that a student likes statistics = $135/200 = 27/40$

(ii) Number of students who do not like statistics = 65

∴, the probability that a student does not like statistics = $65/200 = 13/40$

8. Refer to Q.2, Exercise 14.2. What is the empirical probability that an engineer lives:

(i) less than 7 km from her place of work?

(ii) more than or equal to 7 km from her place of work?

(iii) Within $\frac{1}{2}$ km from her place of work?

Solution:

The distance (in km) of 40 engineers from their residence to their place of work were found as follows:

5	3	10	20	25	11	13	7	12	31	19	10	12	17	18	1
1	3	2													
17	16	2	7	9	7	8	3	5	12	15	18	3	12	14	2
15	15	7	6	12											6

Total numbers of engineers = 40

(i) Number of engineers living less than 7 km from their place of work = 9

, the probability that an engineer lives less than 7 km from her place of work = $9/40$

(ii) Number of engineers living more than or equal to 7 km from their place of work = $40-9 = 31$

, probability that an engineer lives more than or equal to 7 km from her place of work = $31/40$

(iii) Number of engineers living within $\frac{1}{2}$ km from their place of work = 0
∴, the probability that an engineer lives within $\frac{1}{2}$ km from her place of work = $0/40 = 0$

9. Activity : Note the frequency of two-wheelers, three-wheelers and four-wheelers going past during a time interval, in front of your school gate. Find the probability that any one vehicle out of the total vehicles you have observed is a two-wheeler.

Solution:

The question is an activity to be performed by the students.

Hence, perform the activity by yourself and note down your inference.

10. Activity : Ask all the students in your class to write a 3-digit number. Choose any student from the room at random. What is the probability that the number written by her/him is divisible by 3? Remember that a number is divisible by 3, if the sum of its digits is divisible by 3.

Solution:

The question is an activity to be performed by the students.

Hence, perform the activity by yourself and note down your inference.

11. Eleven bags of wheat flour, each marked 5 kg, actually contained the following weights of flour (in kg):

4.97 5.05 5.08 5.03 5.00 5.06 5.08 4.98 5.04 5.07 5.00

<https://loyaleducation.org>

Find the probability that any of these bags chosen at random contains more than 5 kg of flour.

Solution:

Total number of bags present = 11

Number of bags containing more than 5 kg of flour = 7

∴, the probability that any of the bags chosen at random contains more than 5 kg of flour = $7/11$

12. In Q.5, Exercise 14.2, you were asked to prepare a frequency distribution table, regarding the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table, find the probability of the concentration of sulphur dioxide in the interval 0.12-0.16 on any of these days.

The data obtained for 30 days is as follows:

0.03	0.08	0.08	0.09	0.04	0.17	0.16	0.05	0.02	0.06
------	------	------	------	------	------	------	------	------	------

0.18	0.20	0.11	0.08	0.12	0.13	0.22	0.07	0.08	0.01
------	------	------	------	------	------	------	------	------	------

0.10	0.06	0.09	0.18	0.11	0.07	0.05	0.07	0.01	0.04
------	------	------	------	------	------	------	------	------	------

Solution:

Total number of days in which the data was recorded = 30 days

Number of days in which sulphur dioxide was present in between the interval
0.12-0.16 = 2

∴, the probability of the concentration of sulphur dioxide in the interval 0.12-0.16 on any of these days = $2/30 = 1/15$

13. In Q.1, Exercise 14.2, you were asked to prepare a frequency distribution table regarding the blood groups of 30 students of a class. Use this table to determine the probability that a student of this class, selected at random, has blood group AB.

The blood groups of 30 students of Class VIII are recorded as follows:

A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O, A, AB, O, A, A, O, O, AB, B, A, O, B, A, B, O.

Solution:

Total numbers of students = 30

Number of students having blood group AB = 3

∴, the probability that a student of this class, selected at random, has blood group AB = $3/30 = 1/10$

<https://lovaledge.org>
